for PL-T and PL-C lamps

Dimensions in mm

1-lamps

2-lamps
1

Definition

Compact, lightweight, highfrequency electronic regulating ballast for PL-T and PL-C
compact fluorescent lamps.

Description

- The lamp power can be regulated down to 3%
- Stable lamp operation
- 1-10 V control input (European standard)
- Programmed start: flicker-free warm start, ideal for areas with a high switching frequency
- Up to 50% longer lamp life than with conventional ballasts
- Up to 60\% reduction in energy consumption can be achieved by using automatic lighting control systems.
All Philips HF-REGULATOR electronic ballasts are fitted with a-control. This is a dedicated integrated circuit that ensures independent control of each electrode and, in doing so, takes care that:
a. lamp life is unaffected by dimming position;
b. lamp burning is stabler in every dimming position; and
c. energy savings, when dimming, are maximised.

Applications

Typical areas of application include:

- Installations with daylight-linked and remote control systems
- Installations with emergency back-up, according to VDE 0108
- Installations with infrared remote control systems
- Conference rooms
- Cinemas
- Department stores, shops, supermarkets
- Office buildings: insurance companies, banks, government ministries
- Hospitals
- Hotels.

Philips quality
This implies optimum quality with respect to:

- System supplier

As manufacturer of lamps, electronic control gear and lighting control equipment, Philips ensures that, from the earliest development stage, optimum performance is maintained

- International standards Philips HF electronic regulating ballasts comply with all relevant international rules and regulations.

Compliances and approvals

- RFI $<30 \mathrm{MHz}$ EN 55015
- Harmonics EN 61000-32
- Immunity EN 61547
- Safety

EN 60928

- Performance EN 60929-1E
- Vibration \& bump tests

IEC 68-2-6 FC
IEC 68-2-29 Eb

- Quality standardISO 9001
- Approval marks ENEC, equivalent to KEMA, VDE, SEMKO, NEMKO, DEMKO, FI, SEV
- Environmental standard

ISO 14001

- CE marking.

HF-REGULATOR electronic regulating ballasts for PL-T and PL-C lamps

Technical data in relation to energy saving

Lamp	$\begin{gathered} \hline \text { Q ty. of } \\ \text { lamps } \end{gathered}$	Ballast	System	Lamp		
			power*	Power*	Efficacy*	Lumen*
			W	W	Im/W	Im
PL-T 18W	1	HF-R 118 PL-T/C	21	16.5	73	1200
PL-C 18W	1	HF-R 118 PL-T/C	21	16.5	73	1200
PL-T 18W	2	HF-R 218 PL-T/C	38	16.5	73	1200
PL-C 18W	2	HF-R 218 PL-T/C	38	16.5	73	1200
PL-T 26W	1	HF-R 126 PL-T/C	29	24	75	1800
PL-C 26W	1	HF-R 126 PL-T/C	29	24	75	1800
PL-T 26W	2	HF-R 226 PL-T/C	54	24	75	1800
PL-C 26W	2	HF-R 226 PL-T/C	54	24	75	1800
PL-T 32W	1	HF-R 132 PL-T	38	32	75	2400
PL-T 32W	2	HF-R 232 PL-T	72	32	75	2400
PL-T 42W	1	HF-R 142 PL-T	50	43	74	3200
PL-T 42W	2	HF-R 242 PL-T	96	43	74	3200

* At 100\%.

Technical data for installation
Mains operation

Rated mains voltage with tolerances for safety: +/- 10\%
tolerances for performance: $+6 \%-8 \%$
Mains frequency
Operating frequency
Power factor

220-240V
198-264V
202-254V
$50 / 60 \mathrm{~Hz}$
$>42 \mathrm{kHz}$
0.95 at 100\%
power
Smart power: with AC mains voltage fluctuations, 202 - 254 V luminous flux varies by $\pm 2 \%$ max.

DC voltage operation (during emergency back-up)
Required battery voltage for guaranteed ignition 198-254V DC
Required battery voltage for burning lamps $176-254 \mathrm{~V}$ DC
Control input
Control voltage
Protected against accidental mains voltage connection

Regulating level (lamp power)
The control input complies with IEC 929,
Amendment 1, Annex E and is compatible
with Philips lighting control equipment.
Ignition time
Earth leakage current

Maximum number of ballasts which can be connected to one Residual Current Detector of 30 mA

Overvoltage protection

Dual fixture; master slave operation
Advised maximum cable capacity for optimum performance and

EMI suppression

Lamp wiring
max. 30 pF between lamp wires; max. 75 pF between lamp wires and earth; care has to be taken for symmetrical wiring

The use of 500 V rated components is advised for PL-T 32 W and 42 W types Note: Keep lamp wiring as short as possible; do not bunch wires from terminals $1 \& 2$ with those from terminals 3 \& 4 (1-lamp ballasts), or wires from terminals 3, 4, 5 \& 6 with those from terminals $1,2,7$ \& 8 (2-lamp ballasts)

Automatic restart after lamp replacement or voltage dip

Insulation resistance test
yes
500 V DC from Line/Neutral to Earth (not between Line and Neutral) Note: Ensure that the Neutral is reconnected again after abovementioned test is carried out and before the installation is put into operation.

Mains current at 230 V

Ballast	Input current
	A
HF-R 118 PL-T/C	0.09
HF-R 218 PL-T/C	0.17
HF-R 126 PL-T/C	0.13
HF-R 226 PL-T/C	0.24
HF-R 132 PL-T	0.17
HF-R 232 PL-T	0.31
HF-R 142 PL-T	0.22
HF-R 242 PL-T	0.42

Inrush current

| Ballast | Max. quantity of
 ballasts per
 Miniature Circuit
 Breaker | Inrush current
 $1 / 2$ value time
 at typical | |
| :--- | ---: | ---: | ---: | ---: |
| | type B 16A | type C 16A | |
| mains impedance | | | |

C onversion table for max. quantities of ballasts on other types of Miniature C ircuit Breaker

MCB type	Relative quantity of ballasts	
B	16 A	100% (see table above)
B	10 A	63%
C	16 A	170%
C	10 A	104%
L, I	16 A	108%
L, I	10 A	65%
G, U, II	16 A	212%
G, U, II	10 A	127%
K, III	16 A	254%
K, III	10 A	154%

HF-REGULATOR electronic regulating ballasts for PL-T and PL-C lamps

Relationship between lamp power and control voltage

The connection wiring is greatly simplified through use of insert contacts, with push buttons

Wire cross-section:

On the mains side (mains/control voltage):
On the lamp side:
$0.5-1.5 \mathrm{~mm}^{2}$ $0.5-1.5 \mathrm{~mm}^{2}$

Strip length:

11 mm

N otes:

1. Data is based on a mains supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of $2.5 \mathrm{~mm}^{2}$ and another 20 m to the middle of the power distribution), under worst case conditions. With an impedance of $800 \mathrm{~m} \Omega$ the number of ballasts can be increased by 10%.
2. Measurements will be verified in real installations; therefore data are subject to change.
3. In some cases the maximum number of ballasts is not determined by the MCB but by the maximum electrical load of the lighting installation.
4. Note that the maximum number of ballasts is given when these are all switched on at the same moment, i.e. by a wall switch.
5. Measurements were carried out on single-pole MCB's. For multi-pole MCB's it is advisable to reduce the number of ballasts by 20%.
Technical data for design and mounting HF ballasts in fixtures
Temperatures
Temperature range to ignite lamp $+10^{\circ}$ to $+50^{\circ} \mathrm{C}$
with ignition aid
Stable lamp operation assured $>15{ }^{\circ} \mathrm{C}$
Max. tcase $=75^{\circ} \mathrm{C}^{* *}$

Note:
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between the Tc point on the ballast and its lifetime. For more information regarding this subject consult the Philips Application guide to fluorescent lamp control gear.

Class II luminaires

Hum and noise level
this application is not advisable; only with extensive tests on luminaires can the correct operation be verified
naudible

Permitted humidity is tested according to EN 60928 par. 12.
Note that no moisture or condensation may enter the ballast.

The ballasts that are thermally protected use a protective method of another type providing equivalent thermal protection.

O rdering and packing data

Ballast	1 Piece		Bulk packing					EOC
	EAN code	Weight kg		$\begin{aligned} & \text { Dimensions } \\ & \hline \times \mathrm{w} \times \mathrm{h} \\ & \mathrm{~cm} \end{aligned}$	Volume m^{3}	$\begin{array}{r} \text { Weight } \\ \text { gross } \\ \mathrm{kg} \\ \hline \end{array}$	EAN code	
HF-R 118 PL-T/C	8711500059987	0.25	36	$25.5 \times 24.5 \times 18.5$	0.01	9.2	8711500059994	059987
HF-R 218 PL-T/C	8711500058904	0.42	24	$32.4 \times 31.4 \times 17.9$	0.01	10.7	8711500058911	058904
HF-R 126 PL-T/C	8711500060006	0.25	36	$25.5 \times 24.5 \times 18.5$	0.01	9.2	8711500060013	060006
HF-R 226 PL-T/C	8711500058881	0.42	24	$32.4 \times 31.4 \times 17.9$	0.01	10.7	8711500058898	058881
HF-R 132 PL-T	8711500059963	0.25	36	$25.5 \times 24.5 \times 18.5$	0.01	9.2	8711500059970	059963
HF-R 232 PL-T	8711500058843	0.42	24	$32.4 \times 31.4 \times 17.9$	0.01	10.7	8711500058850	058843
HF-R 142 PL-T	8711500059949	0.25	36	$25.5 \times 24.5 \times 18.5$	0.01	9.2	8711500059956	059949
HF-R 242 PL-T	8711500058829	0.42	24	$32.4 \times 31.4 \times 17.9$	0.01	10.7	8711500058836	058829

